Optimal quantization for the one-dimensional uniform distribution with Rényi-α-entropy constraints

نویسنده

  • Wolfgang Kreitmeier
چکیده

We establish the optimal quantization problem for probabilities under constrained Rényi-α-entropy of the quantizers. We determine the optimal quantizers and the optimal quan-tization error of one-dimensional uniform distributions including the known special cases α = 0 (restricted codebook size) and α = 1 (restricted Shannon entropy).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rate-Distortion Bounds for High-Resolution Vector Quantization via Gibbs's Inequality

Gibbs’s inequality states that the differential entropy of a random variable with probability density function (pdf) f is less than or equal to its cross entropy with any other pdf g defined on the same alphabet, i.e., h(X) ≤ −E[log g(X)]. Using this inequality with a cleverly chosen g, we derive a lower bound on the smallest output entropy that can be achieved by quantizing a d-dimensional sou...

متن کامل

Error Bounds for High-resolution Quantization with Rényi-α-entropy Constraints

We consider the problem of optimal quantization with norm exponent r > 0 for Borel probability measures on R under constrained Rényi-αentropy of the quantizers. If the bound on the entropy becomes large, then sharp asymptotics for the optimal quantization error are well-known in the special cases α = 0 (memory-constrained quantization) and α = 1 (Shannon-entropy-constrained quantization). In th...

متن کامل

High-resolution scalar quantization with Rényi entropy constraint

We consider optimal scalar quantization with rth power distortion and constrained Rényi entropy of order α. For sources with absolutely continuous distributions the high rate asymptotics of the quantizer distortion has long been known for α = 0 (fixed-rate quantization) and α = 1 (entropyconstrained quantization). These results have recently been extended to quantization with Rényi entropy cons...

متن کامل

Sharp Bounds Between Two Rényi Entropies of Distinct Positive Orders

Many axiomatic definitions of entropy, such as the Rényi entropy, of a random variable are closely related to the `α-norm of its probability distribution. This study considers probability distributions on finite sets, and examines the sharp bounds of the `β-norm with a fixed `α-norm, α 6= β, for n-dimensional probability vectors with an integer n ≥ 2. From the results, we derive the sharp bound...

متن کامل

Entropy Density and Mismatch in High-Rate Scalar Quantization with Renyi Entropy Constraint

Properties of scalar quantization with rth power distortion and constrained Rényi entropy of order α ∈ (0, 1) are investigated. For an asymptotically (high-rate) optimal sequence of quantizers, the contribution to the Rényi entropy due to source values in a fixed interval is identified in terms of the “entropy density” of the quantizer sequence. This extends results related to the well-known po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Kybernetika

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2010